Edge Sheared Flows and Blob Dynamics

J. R. Myra,^a W. M. Davis,^b D. A. D'Ippolito,^a B. LaBombard,^c D. A. Russell,^a J. L. Terry,^c and S. J. Zweben^b

a) Lodestar, Boulder, CO, USAb) PPPL, Princeton, NJ, USAc) MIT, Cambridge, MA, USA

Presented at the US Transport Taskforce Workshop TTF 2012 Annapolis, MD April 10-13, 2012

Supported by the USDOE under grants DE-FG02-97ER54392, DE-FG02-02ER54678, DE-AC02-09-CH11466, DE-FC02-99ER54512, DE-AC02-09CH11466, and PPPL Subcontract S009625-F.

Motivation & Background

- Sheared flows are believed to be important for the L-H, and H-L transitions.
- Edge sheared flows play a dual role
 - regulating the turbulence (and hence the power flux crossing the separatrix)
 - controlling the character of emitted structures such as blob-filaments.
- Blob generation and dynamics impacts:
 - the (near-separatrix) scrape-off-layer (SOL) width, which is critical for ITER power handling in the divertor
 - far SOL blob interaction with plasma-facing components

GPI blob-trails analysis tool

- Use relative GPI intensity $\delta I/\langle I \rangle$ as the signal to analyze (in 2D space + time)
- For each frame: locate local maxima (blobs), fit ellipse to each
- Track the motion and structure evolution from frame to frame
- Analyze and compare data from
 - NSTX
 - C-Mod
 - SOLT simulations

Experimental blob trails (low power Ohmic and L-mode)

NSTX

Alcator C-Mod high v_{ei}

- Some blob trails show:
 - reversal of v_v near the separatrix
 - "bouncing" off the separatrix
- Some trails show very complicated trajectories, esp. C-Mod high v_{ei}

Lodestar () NSTX-U

Statistical data from blob tracking (low power Ohmic and L-mode)

NSTX

- NSTX: Mean flow is + (e-direction) in edge; (i-direction) in SOL
- Deviations are as large or larger than the means, esp. C-Mod high v_{ei}

Experimental inputs to seeded blob simulations

	NSTX 139444	C-MOD 1100824017
comment	ohmic	ohmic high v_{ei}
$n_{e,sep}$ (cm ⁻³)	5.8×10 ¹²	1.0×10 ¹⁴
T _{e,sep} (eV)	19.	47.
$\rho_{s,sep}$ (cm)	0.26	0.025
$\Lambda_{SOL} \sim \nu_{e^*} (m_e/m_i)^{1/2}$	0.3 – 0.8	1-3
blob size $a_{b,sep}$ (cm)	2.2 ± 0.5	0.4 ± 0.1
blob amp $\delta I / \langle I \rangle _{sep}$	0 – 1.6	0-0.6
profiles	αdw^{1} 0.5 αsh $\Delta r (c$	m) -2 -1 1 1 1 1 1 1 1 1 1

Simulation: physics model

D. A. Russell, et al, Phys. Plasmas 16, 122304 (2009)

<u>Scrape-Off-Layer</u> <u>T</u>urbulence (SOLT) code

- 2D fluid turbulence code: model SOL in outer midplane
 - classical parallel + turbulent cross-field transport
- Evolves n_e , T_e , Φ with parallel closure relations
 - sheath connected, with flux limits, plus collisional regimes
- Strongly nonlinear: $\delta n/n \sim 1 \Rightarrow$ blobs
- Model supports drift waves, curvature-driven interchange modes, sheath instabilities

Present Work:

- Take plasma profiles and connection lengths from NSTX and Alcator C-Mod shots
- Hand-seed blobs as initial condition for simulation, and track their motion
- Compare blob tracks in experiment and simulation
- NSTX base case parameters (mostly so far)
- Some C-Mod cases (labeled)

Seeded blob simulation results

Small amplitude blobs "bounce" off the separatrix, large ones are ejected

- Background <vy > E×B flows small here. The effect must be related to either shear in electron diamagnetic flow, or the sharp change in sheath conductivity at the separatrix
- Ejected blob reverses v_y in SOL (see next slide). Note elliptical deformation
- (Small seeded blob induces a larger blob which does get ejected)

Blobs motion is influenced by wave velocity and Reynoldscharge dynamics as well as background E×B flow

- In edge region v_{*e} is positive and carries the blob (similar to Horton drift vortex)
 - Wave v_g probably relevant here (need to verify)
- Ejected blob reverses v_y in SOL due to tilting of charge dipole

 $t(\mu s)$

- see blob track on previous slide
- accentuates existing flow gradient (incl. v_{*e} gradient)

Blob trapping vs. ejection controlled by strength of blob charge dipole relative to flow shear

- Blob charge dipole here is influenced by changing:
 - amplitude (previous slide)
 - viscosity
 - collisionality (parallel currents and sheath draining of charge)
 - friction (charge dissipation from cross-field currents, e.g. X-points)
- Likely competition: blob vorticity vs. flow shear vorticity (apparently taking account of wave v_g shear?)
 - $v_{yExB}' \ll v_{yblob}'$ in all these cases

• max amp track

Parallel-disconnected blobs exhibit complex shapes and trajectories

- Base case NSTX parameters are marginally sheath connected
- Collisional parallel disconnection induced here by artificially taking $Z_{eff} \rightarrow \infty \Rightarrow$ "inertial" blob regime
- Disconnected limit may be relevant to C-Mod (more complexity is seen in experimental data, and in simulation below)

Edge drift-wave dynamics influences blob behavior

• Vary DW adiabaticity parameter $\alpha_{dw} = (0, 1, 10) * base_case$

weak $\alpha_{dw} \Rightarrow$ strong ejection, no vg-shear, no v_y reversal *at separatrix*

- note Reynolds induced v_E
- asymmetric sheath response to + vs. - charge \Rightarrow v_v < 0
- sheath Te rotation $\Rightarrow v_y < 0$

moderate $\alpha_{dw} \Rightarrow v_y$ reversal

strong $\alpha_{dw} \Rightarrow$ trapped blob - DW inhibits charge dipole - also v_g shear layer

Shear in v_{group} may influence Reynolds flow shear

- Blob a) remains trapped while b) is ejected
- Reynolds generated flow shear (of v_E) follows tilt from shear of v_{gr}
- p_y conservation \Rightarrow bipolar

- Seed blobs at two different locations and examine resulting flow generation
- C-Mod parameters and profiles

Blobs have a tendency to follow background E×B flows in the SOL

- Influence of E×B flows is on top of other mechanisms discussed
- Stronger for flows with shear length > blob scale size
- Flows imposed by specifying sheath potential Φ (\neq 3Te midplane)

Strong shear layers trap the blob

- Direction important (co or counter to DW tilt?, blob spin?)
- Trajectory changed not just by rapid v_y , but v_x actually affected, and can reverse

Lodestar

Conclusions

- Many features seen in blob tracking data can be reproduced from seeded blob simulations
 - size and scale of flows
 - dominant flow direction in edge (electron) and SOL (ion) for NSTX
 - v_v reversal of individual tracks
 - blobs bouncing off the separatrix
 - blob tracking and/or ejection depending on parameters
 - elliptical blob deformations near shear layers
 - complex trajectories especially in collisional cases (like C-Mod)
- New dynamic effects on blob motion and shear flow generation have been identified
 - blob-scale inhomogeneities \Rightarrow charge dipole tilt \Rightarrow v_{y,blob} (can give v_y reversal)
 - shear in background group velocity may influence sense of Reynolds flows
 - blobs do not always follow background E×B flows, or net flows
- Other effects studied but not shown:
 - Effect of initial conditions on blob vorticity decays rapidly, especially dipole; less so for monopole (spin) vorticity.
 - Blob amplitude and scale size may affect $v_{y,blob}$ and how closely the blob tracks background v_E and v_{gr} (preliminary)